電気は何でできているの?電子の流れです

みなさん、電気はどのように作られたのか知りたいと思いませんか。今回は電気の起源について解説します。

電気をつくり出す機械は発電機です。わたしたちに一番身近な発電機というと、自転車のライトについているものです。
そこで、この発電機について調べてみましょう。
自転車の発電機を分解してみると、電線をぐるぐるまきにしたコイルと磁石からできています。磁石にかこまれたコイルが回転すると、コイルの両はしに電気が起こるしくみになっているのです。
コイルに起こった電気は「電子」というものによって運ばれます。電子はマイナスの電気をもった非常に小さな粒で、自由に動き回ることができるものです。
自転車が止まっているときは、発電機のコイルは回転していませんから、電気は起こりません。つまり、電線の中の電子は動かないのです。しかし、自転車が動きはじめると、発電機のコイルが回転して電気が起こります。そうすると、電線の中の電子は、マイナスの側からプラスの側に動きはじめて、電球を光らせるというわけなのです。
このように電気が流れるときには、電子という小さな粒がマイナスからプラスに向かって電線の中を移動するのです。これが電気が流れるということなのです。

電気(electricity)とは、電荷の移動や相互作用によって発生するさまざまな物理現象の総称である。

これには、雷、静電気といった日常的に認識可能な現象も数多くあるが、電磁場や電磁誘導といった専用の計測機器や実験器具がなければ観測の難しい概念も含まれる。

雷は最も劇的な電気現象の一つである。

電気に関する現象は古くから研究されてきたが、科学としての進歩が見られるのは17世紀および18世紀になってからである。しかし電気を実用化できたのはさらに後のことで、産業や日常生活で使われるようになったのは19世紀後半だった。その後急速な電気テクノロジーの発展により、産業や社会が大きく変化することになった。電気のエネルギー源としての並外れた多才さにより、交通機関の動力源、空気調和、照明、などほとんど無制限の用途が生まれた。商用電源は現代産業社会の根幹であり、今後も当分の間はその位置に留まると見られている。また、多様な特性から電気通信、コンピュータなどが開発され、世界にも広く普及している。

電流

電荷を持った粒子の移動によって、電流が発生し、その強さはアンペアを単位として計られる。どんな荷電粒子(電荷担体)でも移動することで電流を形成できるが、電子が最も一般的である。
歴史的な慣習により、電流の流れる向きは正の電荷の流れる向きとされており、電源の正極から負極に流れるとされる。負の電荷を持つ電子は電荷担体としては最も一般的だが、電気回路での電流の流れる向きと電子の移動する向きは反対である。しかし、状況によっては電流の向きと荷電粒子の移動する向きが一致する場合もあるし、荷電粒子が両方向に同時に移動することもある。様々な状況で電流の流れる方向を便宜的に定めるために、このような規定がある。

【スポンサーリンク】

電弧は目に見える電流の一種である。

物質を電流が流れる過程を電気伝導と呼び、その性質は流れる荷電粒子と物質の性質によって様々である。金属の場合は電子が流れ、電気分解においてはイオン(電荷を帯びた原子)が液体中を流れる。粒子自体の移動速度は極めて遅く、せいぜい毎秒数ミリメートルだが、それによって形成される電場は光速に近い速度で伝播する。そのため、電気信号は導線上で極めて高速に伝送される。
電流はいくつかの目に見える現象を引き起こし、歴史的にはそれらが電流の存在を確認する手段でもあった。水に電流を流すと分解されるという現象は1800年にウィリアム・ニコルソンとアンソニー・カーライルが発見した。これがいわゆる電気分解である。そこからさらに研究が進み、1833年にマイケル・ファラデー電気分解の法則を解明した。電気抵抗のある物質を電流が流れるとき、局所的な発熱がある。これを研究したのがジェームズ・プレスコット・ジュールで、1840年に数学的に定式化したジュールの法則を導き出した。電流に関する最も重要な発見をしたのはハンス・クリスティアン・エルステッドで、1820年に講義の準備をしているときに導線に電流を流したときに近くにあった方位磁針が振れることに気づいた。これが電気と磁気の基本的相互作用の発見であり、そこから電磁気学が発展することになった。
工学や実用的観点では、電流を直流 (DC) と交流 (AC) に分類することが多い。これは電流が時間と共に変化するかしないかを示した用語である。直流は電池などが発する電流であり、常に一方向に流れる電流である。交流は電流の流れる向きが定期的に逆転する場合を指す。交流の電流の強さの時間変化は正弦波を描くことが多い。したがって、交流が流れる導体内では電荷(電子)が一方向に進むことはなく、短い距離を行ったり来たりすることになる。交流の電流の強さをある程度以上の時間で平均するとゼロになるが、エネルギーはある方向に運搬され、次に反対方向に運搬される。交流には定常的な直流では見られない特性があり、インダクタンスや静電容量に影響を受ける。そういった特性は電源を入れた直後など回路の過渡現象が主題となる場合に重要となる。

電位

単三乾電池。”+”記号は乾電池の電極間の電位差による極性を表している。
電位の概念は電場の概念と密接な関係がある。電場内に小さな電荷を置こうとすると力を受け、その力に逆らって電荷をその場所に置くことは仕事となる。ある位置の電位とは、単位試験電荷を無限遠からその位置までゆっくり運ぶのに要するエネルギーと定義される。一般にその単位はボルトであり、1ボルトとは無限遠から1クーロンの電荷をその位置に運んでくることが1ジュールの仕事となる位置の電位である。この電位の定義は公式なものだがあまり実用的でない。より実用的な定義として電位差すなわち電圧がある。こちらは単位電荷を2地点間で移動させるのに要するエネルギーと定義される。電場は「保存性」という特殊な性質があり、試験電荷の移動に際して移動経路と移動に必要なエネルギーは無関係である。2地点間の任意の経路で同じエネルギーを要するので、電位差は一意に定まる。ボルトはむしろ電位差の単位として認識されており、電圧は日常的によく使われる。
実用においては、電位の比較・参照の際の基準を定義した方が便利である。定義上は無限遠がそれにあたるが、より実用的には地球自体がそのどこをとっても同じ電位だと仮定することで基準点となる。この基準点をアースまたは接地と呼ぶ。地球は正及び負の電荷の無限の源泉とみなすことができ、そのため電気的には帯電していないし、帯電させることもできないと見なせる。
電位はスカラー量であり、方向はなく大きさだけの量である。これは重力場における高さと似ている。ある高さで物体を離すと重力を発している重力源に向かって落ちていく。同様に電荷をある電位に置くと電場の電気力線に沿って「落ちて」いく。地図に同じ高さの地点を結んだ等高線が描かれるように、電場においても同じ電位の地点を結んだ等電位線を描くことができる。等電位線は電気力線とは直角に交わる。また、電気伝導体の表面は電位が等しいため、電気伝導体の表面とは平行になる。仮に伝導体表面に電位差があってもその電位差をなくすように電荷が移動して等電位になる。
電場は正式には単位電荷に及ぼされる力と定義されているが、電位の概念を使えばもっと実用的で等価な定義が可能である。すなわち、電場とは電位の局所的勾配である。通常ボルト毎メートルで表され、電位の勾配がもっともきつい方向(つまり等電位線が最も密になっている方向)が電場の方向となる。

電気の世界も多種多様に渡りおもしろいですね。エンジニヤリング化されていますので、しっかり勉強しましょう。

コメントを残す

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です