どうして化石から恐竜やその生活がわかるの?古代のことは化石や地層から推測するの?

古代の状況は誰がいつごろどのようにして考えたのでしょうか。興味がありますよね。

<h2>●恐竜は大昔に生きていた動物ですから、恐竜を研究するためには化石を調べるしかありません。</h2>化石にはいろいろあります。まず、恐竜の歯の化石です。歯は硬いためによく化石となって残りますが、食べるもので歯の形は違ってきますから、歯の化石を見れば、その恐竜が何を食べていたのかがわかります。
ナイフのようにとがった歯なら、その恐竜は肉食であったに違いありません。先が平らか丸い歯なら、その恐竜は植物の葉っぱや実を磨り潰して食べていたと考えられます。歯の化石1本からでも、頭の大きさを推定したり、どのような種類の恐竜なのかを決めることができます。
次に、恐竜の骨の化石が見つかれば、体の大きさが推定できます。骨がたくさん見つかり、それを組み立てれば、骨格がわかりますし、骨の凹凸をよく調べれば、筋肉のつき方などもわかり、どのような恰好をした恐竜であったかがわかってきます。たとえば4本あしで歩いていたのか2本あしで歩いていたのか、どのくらいのスピードで走れたのかなど、恐竜の動き方まで想像できるのです。
また、恐竜といっしょに葉っぱの化石などが見つかれば、その植物を調べて、恐竜が暮していたところが森なのか草原なのかがわかります。しかも化石になっている花粉でさえ、何の花粉なのか調べることができるのです。
かわった化石では、恐竜の巣の化石や卵の化石などがあります。そのほか、赤ちゃん恐竜や子供の恐竜が大人の恐竜の化石といっしょに見つかった場所もあり、恐竜が子育てをしたという証拠になっています。
また、ミイラになってから化石になった恐竜も見つかっており、体の表面が鱗で覆われていたこともわかりました。
また、肉食恐竜が草食恐竜のあとを追いかけていったようすが想像できる、足跡の化石なども発見されています。
恐竜の化石が見つかった所の、そのまわりを注意深く探せば、必ず他の化石も見つかります。いろいろな化石を調べると、まるでジグソーパズルのように、恐竜の生活が少しずつ想像できていくのです。

<h3>●化石(Fossil)とは、地質時代に生息していた生物が死骸となって永く残っていたもの、もしくはその活動の痕跡を指す。</h3>
多くは、古い地層の中の堆積岩において発見される。化石の存在によって知られる生物のことを古生物といい、化石を素材として、過去の生物のことを研究する学問分野を古生物学という。なお、考古学において地層中に埋蔵した生物遺骸は「植物遺体」「動物遺体」など「遺体・遺存体」と呼称される。
資料としての化石は、
1. 古生物として、
2. 堆積物として、
の二重の性格を併せもっている。

<h3>●でき方と産出状況</h3>
化石は、過去の生物の遺骸や遺跡が、何らかの形で地層の中から発見されたものである。
遺骸が地層にとじ込められたのち、肉などの軟質部は通常、化学変化により失われる。従って、化石には動物の骨や殻、歯などの固い組織の部分を主として、それらが鉱物に置換されて残っているものが多いが、木の葉や恐竜をはじめとする動物の皮膚や羽毛の型が残っているもの、貝などの内部が鉱物で充填されたものもある。形状的には、凸型(雄型、石膏型形状)のものを「カスト」、凹型(雌型、鋳型形状)を「モールド」と呼ぶ。また、軟体性生物あるいは生物における軟質部が酸素の少ない泥に閉じ込められたバージェス頁岩のような例もまれに見つかる。
また、鉱物に置換されていない例として、炭化した植物、琥珀(こはく)に取り込まれた昆虫、シベリアで発掘された生体に近いマンモス、新しい時代では貝殻がそのまま化石になるなどの例もある。2005年、アメリカでティラノサウルスの大腿骨から柔軟性を残した血管や骨細胞が発見され、どのくらい組織が残されているか注目されている。

<h3>●生物体それ自体だけでなく生物活動の跡(遺跡)も生痕化石といわれ、化石の一種とされる(足跡、這い跡、巣穴など)。</h3>生痕化石は、生物本体の化石よりも重要ではないと考えられるかもしれないが、必ずしもそうではない。生物体化石だけでは判らないことが、生痕化石から判断できる場合も多い。発達した生物が多く現れる古生代カンブリア紀の始めを示すのは這い跡の生痕化石であり、恐竜の行動様式が判るのは足跡の研究の成果である。タンザニアでは、360万年前のアウストラロピテクスの足跡の化石が見つかっており、そこでは親子が並んで二足歩行していることが実際に確かめられている。動物の排泄物の化石(糞化石)も、その動物の消化器官の様子や、餌にしていた生物を知る重要な手がかりとなる。また、恐竜の卵の化石は一箇所に集中して大量に見つかることが多く、マイアサウラのように、ある種の恐竜は子育てをしたのではないかと推論される証拠も見つかって、このような例から動物たちの多様な行動様式を知ることができる。
いずれにせよ、化石としてのこる生物は偶然に左右され、その身体の部位、条件、その他きわめて限られた場合だけである。たとえば、鳥類については他のものより産出量は少なく、始祖鳥と現世鳥類を結ぶ進化の過程には未解明な点が今なお多い。また、化石から分かる情報もそれなりに限られたものである。しかし、過去の生物を直接目にすることは、化石を通じてしかありえない。それゆえ、進化という考えの起源の一つが化石研究であったのは当然である。とはいえ、化石から生物界の種すべての情報を引き出せるわけではない。生物界全体を見渡せば、化石から系統進化にかかわる知識を汲み出せるのは動物界と植物界だけにほぼ限られると言ってよい。菌界、原生生物界、細菌、古細菌の化石の産出も少なくないが、微化石として多産するもの以外については、通常、断片的な知識しか得ることができない。
ただし、原核生物など極めて情報量の乏しい生物群でも、他生物の化石と細胞内共生やLGTなどを利用して関連付けることで系統樹に関する情報を得ることができる場合がある。分類群特有の成分も分子化石として産出する場合がある

【スポンサーリンク】

<h3>●化石の意義</h3>
生命の誕生
生命がいつ誕生したについては諸説がある、グリーンランドのイスア地方では、38億年前(先カンブリア時代)の堆積岩中に生命に由来するものと思われる炭素の層が見つかっており、オーストラリアでは保存状態が良好な34億6,000万年前以前のバクテリアの化石が西オーストラリア州より発見されている。同州では、さらに1億年以上古いと推定される化石も見つかっており、早ければ43億年前に生命が発生したと考える研究者もいる。いずれにせよ、化石は生命の起源を探究していくうえで重要な鍵を握る直接的な資料となっている。

生物史の解明
化石は過去の生物の遺骸であることから、過去の生物を復元的に考察し、古生物界の様相や推移を知るためのほぼ唯一の資料であり、誕生以来長く続いてきた生命の長い歴史、とくに系統進化の直接的な証拠となる。生物は、地球の歴史のなかで生まれ、それが分化し、あるものは繁栄して、その後ある種は絶滅するが、再び新しい生物群が誕生するという巨大な流れを展開している。この流れのなかで、かつては多くの種に分かれて繁栄したものの、現在はその子孫がごく限られた場所にわずかに生き残っている例を「生きている化石」とよんでいる。

系統学と化石
生命誕生以来、地球の表層部に蓄積された化石は莫大な数に達する。これらの化石は記載され、化石標本をもとに同定され、現生の生物と同様にその系統的類縁関係の検討の結果、過去から現在につらなる動植物界のドメイン・界・門・綱・目・科・属・種などの分類上の階級的位置が定められ、系統進化の道筋が明らかにされた。それは通常系統樹(デンドログラム)というかたちでまとめられ、叙述される。また、データの検討と考察によって、種の分化、進化のスピード、絶滅の原因などについても追究されている。さらに、こんにちではコンピュータによる統計処理によってデータの定量的解析が飛躍的に進んでいる。だが、現生の生物の祖先の形を知るには、現在でも化石以外に頼れる証拠はない。いずれにせよ、系統学の存在と発展にとって化石はなくてはならない根本的な資料であり、化石がなくては系統学そのものが成り立たない。

分類学と化石
系統学と分類学は密接な関係にある。生物の多様性に関して重要なのは、それが「種」とよばれる不連続群によって最も意味深くあらわれることである。系統学においては連続的なものとしてまとめられることが、ここでは不連続的な一単位を基礎に検討される。また、分類学は古生物のみならず現世の生物をも対象としている。ここでも化石は、他の動植物の標本資料とならんで自然分類を考察していくうえでの重要な手掛かりとなって居る可能性がある。

地質学・地球物理学と化石
化石を堆積物としてみた場合、そもそも「古生代」「中生代」「新生代」など地質時代の区分(地質年代)は、化石にもとづいて定められたものであり、カンブリア紀は俗に「三葉虫時代」と呼ばれたりする。
地質学研究の分野において化石を利用する目的には、
1. それぞれの地層を時代ごとに分けること。
2. 地理的に隔たった地域の地層を互いに時間的に対比すること。
3. 化石をふくむ岩石が堆積する際の諸条件を研究すること。
などがある。後述する示準化石は1.の、示相化石は3.の根拠となる化石のことであるが、もとより、この二者は互いに対立するものではなく、示準化石であると同時に示相化石である場合も多い。
2.に関しては、三畳紀初期の陸棲の四脚歩行動物であるLystrosaurus(リストロサウルス)の化石がアフリカ大陸と南極大陸の両方で見つかったことにより、アフリカから南極まで乾いた陸の上を歩いたものと考えられ、それゆえ両大陸がかつて接続していた蓋然性があらためて指摘された。同様に、Cynognathus(哺乳類型爬虫類)、Mesosaurus(淡水性の爬虫類)、Glossopteris(シダ類)の化石がいずれもこんにち遠く隔たった複数の大陸にまたがって発見されている。このことは、南半球にかつてひとつながりの大きな大陸(ゴンドワナ大陸)が存在していたとする仮定、大陸移動説およびプレートテクトニクス理論の両仮説を裏付ける物的な証拠資料と考えられる。

示準化石
放射性同位体による年代推定法が確立するまでは、地層のできた時代を知る手がかりは、化石のみであった。そのなかでも、特定の地質時代に限り生息していた特定の種の化石は示準化石と呼ばれ、それぞれの地層の年代決定に用いられる。これは、イギリスのウィリアム・スミスの研究により確立された方法である。示準化石として好ましい条件には、以下のようなものがある。
1. 進化が速かった、すぐに絶滅した、などの原因で、生息していた期間が短い。
2. 広い範囲に渡って分布している。
3. 数多く産出する(当時の生息数が多い)。
示準化石の例としては三葉虫(古生代)、フデイシ(古生代)、アンモナイト(中生代)、ビカリア(新生代)などがある。

示相化石
特定の環境(気候、水深、水温、地形など)に限って棲息していた特定の種の化石は示相化石と呼ばれ、地層が堆積した古環境の検討や特定に用いられる。示相化石は、サンゴ(暖かく澄んだ浅い海)やシジミ(川の河口付近)などがわかりやすい例であるが、実際にはすべての化石が多かれ少なかれ示相化石としての意味をもつものであり、とくに植物化石は、古気候などを知る重要な資料となっている。こんにち、第四紀における気候の変遷はそれぞれの種の植物化石の消長によって詳細にたどられている。

化石も奥底深いですね。範囲も広いし、人類はよくここまで調査や研究をしているのにはびっくりしますね。

コメントを残す

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です